Sparse Coding of Natural Images Using an Overcomplete Set of Limited Capacity Units
نویسندگان
چکیده
It has been suggested that the primary goal of the sensory system is to represent input in such a way as to reduce the high degree of redundancy. Given a noisy neural representation, however, solely reducing redundancy is not desirable, since redundancy is the only clue to reduce the effects of noise. Here we propose a model that best balances redundancy reduction and redundant representation. Like previous models, our model accounts for the localized and oriented structure of simple cells, but it also predicts a different organization for the population. With noisy, limited-capacity units, the optimal representation becomes an overcomplete, multi-scale representation, which, compared to previous models, is in closer agreement with physiological data. These results offer a new perspective on the expansion of the number of neurons from retina to V1 and provide a theoretical model of incorporating useful redundancy into efficient neural representations.
منابع مشابه
Face Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملEfficient Sparse Coding in Early Sensory Processing: Lessons from Signal Recovery
Sensory representations are not only sparse, but often overcomplete: coding units significantly outnumber the input units. For models of neural coding this overcompleteness poses a computational challenge for shaping the signal processing channels as well as for using the large and sparse representations in an efficient way. We argue that higher level overcompleteness becomes computationally tr...
متن کاملLearning sparse, overcomplete representations of time-varying natural images
I show how to adapt an overcomplete dictionary of spacetime functions so as to represent time-varying natural images with maximum sparsity. The basis functions are considered as part of a probabilistic model of image sequences, with a sparse prior imposed over the coefficients. Learning is accomplished by maximizing the log-likelihood of the model, using natural movies as training data. The bas...
متن کاملAn ADMM Solution to the Sparse Coding Problem
For our project, we apply the method of the alternating direction of multipliers and sequential convex optimization to sparse coding of images. The motivation behind sparse coding of images is to model how the brain is able to efficiently utilize the human visual system for a variety of tasks, such as separating a car from a background, as well as general classification tasks. Sparse coding aim...
متن کاملSparse Coding Neural Gas: Learning of overcomplete data representations
We consider the problem of learning an unknown (overcomplete) basis from data that are generated from unknown and sparse linear combinations. Introducing the Sparse Coding Neural Gas algorithm, we show how to employ a combination of the original Neural Gas algorithm and Oja’s rule in order to learn a simple sparse code that represents each training sample by only one scaled basis vector. We gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004